七下補考:課程重點

數的爬蟲類

請以 A4 紙張抄寫,寫上班級座號姓名,字體要工整。

•		*/— *// - /		•	/	•	
	班級	座號	姓名				

1	· 1 細	胞的	分裂			9. 有些行有性生殖的動物, 會表現求偶、交面
	1. 細胞ゲ	入 裂與2	减數分裂的	北較:		護卵和育幼等行為。
		染色體複製	分裂 分裂	產生 子細胞數目	子細胞染色體數目	10. 男性的精子可在女性的輸卵管與卵相遇, 合成受精卵。
	細胞分裂	1次	1次	2 個	與原細胞 染色體數 目相同	11. 胎兒藉由胎盤和臍帶從母體獲得養分和 氣,並將產生的廢物送入母體代為排出。
	減數分裂	1次	2 次	4 個	為原細胞 染色體數 目的一半	12. 花、果實和種子是開花植物的生殖器官, 的花包括萼片、花瓣、雄蕊和雌蕊,共同著 花托。
	胞的一合後,	一半,和	稱為單套(1 復為雙套(n) 染色體 2n) 染色	數目為原細 ,當配子結 體。 有性生殖則	13. 開花植物行有性生殖的過程: ①授粉②受結果④萌芽
	需經過	配子)	形成和受精	作用的過	程。	2·1 解開遺傳的奧祕
1	・2 無	性生	殖			1. 生物體的構造或生理特徵稱為性狀。每一
	裂生殖養。		子繁殖、營		裂生殖、斷殖、組織培	性狀具有不同的特徵,例如豌豆莖的高度 此性狀具有高莖、矮莖兩種特徵。 2. 由親代經生殖作用將性狀的特徵傳給子代 過程,稱為遺傳。
				14口 4 分	双塘 佐田	3. 孟德爾的遺傳法則:
	6. 有性生	三殖的生	色體數目與	吕子形成和	受精作用可	(1)性狀所表現出來的特徵由遺傳因子的組織 所決定,遺傳因子有顯性和隱性兩種。 (2)顯性和隱性遺傳因子同時存在時,只有疑
	比較	方式	體外受料	精 第	體內受精	性遺傳因子所控制的特徵才會顯現。 (3)親代體內的成對遺傳因子在形成配子時類
	受精場	易所	體外	雌	性個體內	互相分離,各進入不同配子中。
	受精成	功率	低		高	4. 基因(gene)是控制性狀表現的基本單位
	雌體排	卵數	多		少	5. 對具有雙套染色體的生物而言,控制某一
	動物種	打水日	兩生類、多 珊瑚和魚類		量、爬蟲類、 質和哺乳類	狀表現的基因通常包含兩個遺傳因子,此
	8. 胚胎發	育方:	式的比較:			遺傳因子位於同源染色體的相對位置上, 為等位基因(allele)。
H	亡較	方式	卵生		胎生	6. 等位基因的組合型式稱為基因型;個體性
	胚胎發育	場所	母體外	、母	體的子宮內	所表現的特徵則稱為表現型。
	動物種類		多數的魚類 生類、鳥類		數的哺乳類	//I PC/Jed J 13 IBX//J IIJ/mg/CC/Jum.

2 · 2	人	類的遺傳	事				
7. ABO 血型之基因型與表現型的關係如下:							
表現型		A型 B型 O型 AB型		AB 型			
基因型	I^{A}	$^{A}I^{A}\cdot I^{A}i$	$I^B I^B \cdot I^B i$		ii	$I^A I^B$	
图. 人类	8. 人類體細胞中有 23 對染色體,其中有 1 對						
與	生另	引決定有關	園,稱為性第	绝	體。す	女性的性	
染色	 色體	豊以 XX ā	 表示;男性的	勺性	染色	體以 XY	
表示	下。						
性別			男性		-	女性	
體細脈			對+XY			對+XX	
生殖細	胞	22 條+2	X 或 22 條+	Y	22	條+X 	
2 · 3	突	變					
9. 遺(專物	可質發生變		第為	突變。	0	
10. 基图		ミ變在自然	然界中的發生	機	率非常	常低;但	
某	些物	7理因子(例如紫外線	、核	輻射	和X光)	
或位	或化學物質(例如亞硝酸鹽、黃麴毒素),會						
增加	加基	因突變的	内機率。				
11. 突勢	菱 老	告發生在體	豊細胞內,只	會	在個別	豊表現出	
突勢	虁 的	习特徴;但	日若發生在生	:殖:	細胞	,突變的	
基	因便	巨有機會還	遺傳給子代,	改	變子作	弋特徵。	
12. 人类	須的	可遺傳性疫	医病致病原因	<u>:</u>	染色體	豊數目異	
常	:唐	氏症;來	自親代的突	變基	基因:	白化症、	
地口	中海	型貧血、	血友病、紅	[綠	色盲		
13. 各元	大醫	於多設有	可遺傳諮詢 或	₹優.	生保條	建門診,	
民是	訳 豆	「諮詢嬰兒	尼罹患遺傳性	连疾	病的標	幾率,以	
			的參考,尤其	是	有遺傳	專性疾病	
史色	的家	《族成員。					
2.4 生物技術的確用							

14. 生物技術是指人類運用操控生物的方法來提

15. 生物技術可應用在醫療、農業和畜牧業上,

基因轉殖和複製牛物等。

但其發展仍存有隱憂。

供生物產品,以改善生活的技術。例如育種、

1. 在地球的長久歷史中,生物的體型和構造一 直改變,這漫長的改變過程稱為演化。 2. 化石是古生物的身體遺跡或活動痕跡,在岩 層中經長時間的地質作用所形成。 3. 從化石種類可推測地球環境和物種的改變。 4. 地球上的生命最初可能出現在海洋中,接著 生物物種由少到多;形式由簡單變複雜。 3.2 生物的命名與分類 5. 二名法第一個字為屬名,表示分類關係;第 二個字為種小名,則表示生物的特徵、產地 或其他意義。 6. 目前生物分類的階層由高至低,依序分為界、 門、綱、目、科、屬、種。 7. 同「種」的生物有多項相似特徵,能在自然 環境下交配繁殖,產下具生殖能力的後代。 8. 病毒外層是蛋白質所構成的外殼,內部有遺 傳物質,有些種類會侵入人體,引起疾病。 3·3 原核生物與原生生物 │9. 原核生物構造較簡單,其遺傳物質沒有核膜 包圍形成細胞核,因此稱為原核生物。 10. 原生生物界依其營養方式可分為三大類:藻 類、原生動物、原生菌類 3 · 4 真菌界 11. 真菌有細胞壁但不具葉綠體,需從活生物或 生物遺體吸收養分維生。 3.5 植物界

3·1 持續改變的生命

種類	特徴	舉例
蘚苔	個體矮小,無維管束。	地錢、土馬騌
蕨類	以孢子繁殖。	腎蕨、筆筒樹
種子	裸子植物: 毬果是生殖 器官,種子裸露。	松、杉
植物	被子植物:花是生殖器 官,種子有果實保護。	花生、玉米

12. 植物的分類如下:

13. 被子植物可分為雙子葉植物與單子葉植物

3.6 動物界

14. 常見的無脊椎動物:

分類	特徵	舉例
軟體動物門	身體柔軟,多有 外殼保護。	蝸牛、文蛤、 烏賊、章魚
節肢動物門	身體分節,有附 肢及外骨骼。	蜻蜓、蜘蛛、 蝦、蟹

□15.常見的脊椎動物:

分類	特徴	舉例
魚類	以鰓呼吸,可分為軟 骨魚和硬骨魚。	鯊魚、魟魚、 海馬、小丑魚
兩生類	幼體以鰓呼吸,成體 以肺呼吸。	蛙、蟾蜍
爬蟲類	體表具防止水分散失 的鱗片或骨板。	蛇、龜、蜥蜴
鳥類	前肢演化為翅膀,體 表具羽毛。	小白鷺、臺灣 藍鵲
哺乳類	母體分泌乳汁哺育幼 體,體表多有毛髮。	鴨嘴獸、鯨、 袋鼠、蝙蝠

4·1 生物生存的環境

- 1. 生物圈包含了水域、低層大氣及地表等區域, 大約是海平面上下 10 公里的範圍。不同環境中,會有適合在該環境中生存的生物。
- 2. 組成生態系的層次由小到大依序為:個體 ▶ 族群 ▶ 群集(群落) ▶ 生態系
- 3. 利用捉放法可以估算動物族群大小。其公式 如下:

捉出的有記號圍棋子數目

捉出圍棋子的總數 有做記號的圍棋子總數

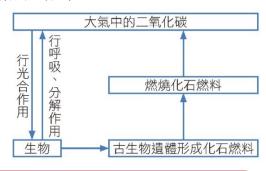
- = 合中所有圍棋子的估計總數
- 4. 影響族群大小的因素有出生、死亡、遷入和 遷出,其中出生和遷入會使族群變大,死亡 和遷出則會使族群變小。
- 5. 在生態系中,物種組成會隨著時間變化,稱 為演替(又稱消長)。

4·2 能量的流動與物質的循環

6. 生物依獲得能量的方式,可分為:

(1)生產者:可吸收外界物質,自行製造所需

養分。


(2)消費者:必須透過攝食以獲得養分。

(3)分解者:分解生物碎屑及排泄物。

7. 將消費者與生產者彼此之間的食性關係連起來,就成了食物鏈:

生產者→初級消費者→次級以上消費者

- 图 8. 生態系中的食物鏈彼此交錯,形成食物網,當中每種生物族群的增減都會影響其他生物。食物網越複雜的生態系,越能應付環境變化。
- 9. 生物體所含的總能量可按食物鏈層級,排列 成能量塔。能量由生產者沿食物鏈向各級消 費者流動,每一階層的能量只有約 1/10 能夠 向上傳遞。
- 10. 碳循環的過程:

4·3 生物的交互關係

11. 生物間的交互關係:

關係	生物間的行為
掠食	掠食者掠食獵物。
競爭	生物間須爭取相同資源。
共生	互利共生:兩種生物一起生活,對彼此 都有利。
六 生	月利共生:兩種生物一起生活,對一方 有利,而另一方無害也無利。
寄生	兩種生物一起生活,對一方有利,對另 一方有害。

___12. 利用生物間的交互關係,對病蟲害進行一些 無農藥汙染的防治措施,例如利用害蟲的天 敵或微生物等來減少蟲害,稱為生物防治。

4·4 多采多姿的生態系

13. 地球上的生態系可區分成許多不同類型:

環境	生態系特徵
	海洋:分為潮間帶、淺海區與大洋區
水域	河口:河川與海洋的交界處
	淡水:可分為溪流與湖泊
	森林:年雨量約在750毫米以上
陸域	草原:年雨量介於森林及沙漠之間
	沙漠:年雨量低於 250 毫米

5·1 生物多樣性的重要性與危機

1. 地球	比上存在	E著多樣	能的物	種及珠	環境,	生活在	ΕĒ
	5域中的	的所有生	三物,	在個體	豊遺傳	物質、	種
類、	棲地等	存各方面	百存在	的差异	異與豐	富性,	稱
為生	三物多樣	€性。					
2. 從多	多樣的生	:物資源	原中可	以尋得	身解決	糧食及	と其

- 2. 從多樣的生物資源中可以尋得解決糧食及其他生存問題的方法,例如從野生生物中尋找帶有抗病或抗蟲的基因,研究植物以研發新藥等。
- 3. 危害生物多樣性的五個因素包括人口問題、 棲地破壞、過度開發利用、汙染和外來物種:
- 4. 工業與農業發展造成許多環境汙染問題,常 見的汙染包括了空氣汙染和水汙染。
- 5. 優養化是指一片水域中所含養分,隨著時間 逐漸增加的一種過程。排泄物、肥料、汙水 及垃圾未經妥善處理即流入水中,將使得水 中的養分過多,加速水體優養化。
- 6. 許多汙染物質,例如重金屬、農藥、殺蟲劑等,難以被生物的代謝作用排除而累積在生物體內,再藉由食物鏈的傳遞,使上層消費者累積較多有毒物質,此現象稱為「生物放大作用」。
- 7. 全球氣候變遷,都會對生態環境造成重大影響,甚至會使整個環境更不利於生物生存。

5.2 維護生物多樣性

8. 生態保育的趨勢是以生物多樣性的維護來代
替單一物種的保育。

9. 國際間有許多重要的公約與組織,都是為了 維護生物多樣性而成立的:

組織/公約	工作或議定內容
國際自然保護 聯盟 (IUCN)	評估現存生物的瀕危等級,制定 <u>瀕危物種紅色名錄。</u>
瀕臨絕種野生動植物國際貿易公約(CITES)	建立野生動植物輸入與輸出國 之間的合作管道,確保瀕危物種 不受非法貿易所害。
生物多樣性公約	使世界各國在政治、經濟與保育 工作的研究、執行上可以互相支 援,讓世界各國共同為維護生物 多樣性而努力。
拉姆薩溼地公 約	透過國家行動和國際合作來保 護與合理利用溼地。

- [10. 臺灣為了落實生態保育所劃設之保護區可區 分為四類:自然保留區、野生動物保護區及 野生動物重要棲息環境、國家公園及國家自 然公園和自然保護區。
- [___]11. 面對生態保育與經濟發展間的衝突,需找到 能兼顧兩者的平衡點。
- [___]12. 平時在生活中應做到節能減碳、愛惜地球資源;帶著關懷與欣賞的心情貼近大自然,更 能體會生態保育的重要性。

跨科

第1節 植物對水土保持的重要性

1. 降雨或河流等水的流動會帶走土壤,稱為力土流失。
2. 植物具有淨化水質,改善土壤環境的功能。
3. 植物的根能夠抓住土壤,而葉片能夠阻擋雨水直接沖刷地表,有助於水土保持。
4. 山坡地若種植根固定土壤能力較差的經濟价物,例如:檳榔樹、竹林和生薑等,對水土保持不佳,使土石流的風險較高。
5. 山坡地的植被分布越密,越有助水土保持。

第2節 植物調節環境的能力

6. 植物具有淨化空氣的功能。
7. 植物進行光合作用時會吸收大氣中的二氧化
碳,降低其濃度。
■ 8. 有些植物葉片能沾附懸浮微粒,降低空氣中
懸浮微粒的濃度。
9. 有些植物能分解空氣中對人體有害的物質,
例如甲醛。
10. 植物有調節環境溫度的功能:
(1)植物進行蒸散作用時,水離開植物的過程
中會帶走熱,使周遭溫度降低。
(2)植物的葉片能遮擋陽光,避免陽光直射
地表。
11. 植物散發的芬多精對人類的免疫、神經系統
等有所幫助,能促進人體健康。
12. 人類應減少對植物的過度利用,維持人與其
他生物共生共存的環境。